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In this work, the boundary layers over a continuously shrinking sheet with a power-law surface velocity
and mass transfer were investigated. Based on the boundary layer assumptions, the similarity equations
with a controlling parameter b were obtained and solved numerically. Theoretical analysis was con-
ducted for certain special conditions and exact solutions were derived for b = �1 and b = �2 and also
for the power index m ¼ �1. Numerical techniques were used to solve the similarity equation for other
parameters. Quite different and interesting solution behaviors were found for a shrinking sheet compared
with a stretching sheet. Multiple solutions were obtained for certain mass transfer parameter and con-
trolling parameter b. Velocity overshoot near the wall and near the boundary layer edge were observed
for certain solution branches. The current results for a power-law shrinking sheet offer quite interesting
nonlinear behaviors and greatly enrich the solution and understanding of boundary layers.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The flow induced by a stretching boundary is important in the
extrusion processes in plastic and metal industries [1–3]. The pio-
neering work in this area was carried out by Sakiadis [4,5]. Sakiadis
analyzed the boundary layer assumptions and the governing equa-
tions of the problem, and the boundary layer flow on a continu-
ously stretching surface with a constant speed was investigated.
His work was further verified by Tsou et al. [6] experimentally. Fol-
lowing these works, the boundary conditions on the surface were
generalized by other researchers [7–18]. The velocity of the surface
was changed to be a function of distance from the slot, where the
surface was stretched out. A power-law velocity function was the
most common case. Thermal boundary conditions included a
power-law surface temperature or a power-law surface heat flux.
Mass transfer such as fluid suction and injection was also consid-
ered on the stretching surface. Exponentially stretching velocity
and rapidly decreasing velocity conditions were also discussed
[14–16]. The effect of radiative heating on a moving sheet was
studied through numerical simulation [17]. A new solution branch
for both impermeable and permeable stretching sheets was found
by Liao [18,19], which indicates that multiple solutions for the
stretching surfaces are possible under certain conditions. Recently,
a paper was published by Miklavcic and Wang [20] to investigate
ll rights reserved.
the flow over a shrinking sheet. For this flow configuration, the
fluid is stretched toward a slot and the flow is quite different from
the stretching case. It is also shown that mass suction is required
generally to maintain the flow over the shrinking sheet. In their pa-
per, 2D and axis-symmetric conditions were discussed and those
solutions are fortunately the exact solutions of the Navier–Stokes
equations. The shrinking sheet problem was also extended to other
fluids [21,22]. For this new type of shrinking flow, it is essentially a
backward flow as discussed by Goldstein [23]. For a backward flow
configuration, namely the surface moving from +1 to the slot, the
fluid loses any memory of the perturbation introduced by the lead-
ing edge, say the slot. Therefore, the flow induced by a shrinking
sheet shows quite distinct physical phenomena from the forward
stretching flow. A search on the literature about this flow showed
few publications on this subject since it is quite a new type of flow.
The objective of this paper is to extend the shrinking sheet problem
to a more general situation with a power-law velocity of the sheet
shrinking into the slot. The effects of the power index on the wall
drag and flow behavior will be discussed.
2. Mathematical formulation

Consider a steady, two-dimensional laminar flow over a contin-
uously shrinking sheet in a quiescent fluid. The sheet shrinking
velocity is Uw = �U0xm and the wall mass suction velocity is
vw = vw(x), which will be determined later. The x-axis runs along
the shrinking surface in the direction opposite to the sheet motion
and the y-axis is perpendicular to it. Based on the boundary layer
assumption the governing equations of this problem become
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Nomenclature

a a constant in the analytical solutions related to the mass
transfer parameter

a1 an integration constant
a2 an integration constant
f dimensionless free stream function
f
0

the first derivative of f with respect to g
f
00

the second derivative of f with respect to g
f
000

the third derivative of f with respect to g
m power exponent for the wall velocity distribution
s mass transfer parameter at the sheet
u fluid velocity in x direction
v fluid velocity in y direction
vw fluid velocity in y direction at the sheet
x coordinate along the shrinking sheet pointing to the

opposite direction of sheet motion
y coordinate perpendicular to the x direction
C a constant in the solution equal to f(1) for b = 1

C0 an integration constant
U0 constant in the sheet shrinking velocity
Uw sheet shrinking velocity

Greek symbols
b control parameter b ¼ 2m

mþ1
a dimensionless wall stress, f

00
(0)

g similarity variable
m kinematic viscosity
u newly defined the stream function for large mass suc-

tion
_u the first derivative of u with respect to x
�u the second derivative of u with respect to x
€u the third derivative of u with respect to x
w stream function
x defined new variable
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ou
ox
þ ov

oy
¼ 0; ð1Þ
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þ v

ov
oy
¼ v

o2u
oy2 ð2Þ

with the boundary conditions

uðx;0Þ ¼ �U0xm; ð3aÞ
vðx;0Þ ¼ vwðxÞ; ð3bÞ
uðx;1Þ ¼ 0: ð3cÞ

where u and v are the velocity components in the x and y directions
respectively, m is the kinematic viscosity. The stream function and
similarity variable can be posited in the following form:

wðx; yÞ ¼ f ðgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
mþ 1

mxU0xm

r
ð4aÞ

and

g ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2
U0xm

mx

r
: ð4bÞ

With these definitions, the velocities are expressed as u ¼ U0xmf 0ðgÞ
and

v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2
U0mxm�1

r
f 0ðgÞg m� 1

mþ 1
þ f ðgÞ

� �
:

The wall mass transfer velocity becomes

vwðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2
U0mxm�1

r
f ð0Þ / xðm�1Þ=2:

The similarity equation is obtained as follows:

f 000 þ ff 00 � bf 02 ¼ 0 ð5Þ

with the boundary conditions (BCs)

f ð0Þ ¼ s; ð6aÞ
f 0ð0Þ ¼ �1; ð6bÞ
f 0ð1Þ ¼ 0; ð6cÞ

where s is the wall mass transfer parameter showing the strength of
the mass transfer at the sheet and b ¼ 2m=ðmþ 1Þ. But the above
derivation does not apply to the case with m = �1. When m = �1,
the similarity solution reads

f 000 þ f 02 ¼ 0 ð7Þ
with the same BCs as Eq. (6a)–(6c), where the stream function is
wðx; yÞ ¼ f ðgÞ

ffiffiffiffiffiffiffiffiffi
mU0
p

and the similarity variable is g ¼ ðy=xÞ
ffiffiffiffiffiffiffiffiffiffiffi
U0=m

p
.

However, the wall suction velocity for this particular is always zero
even though s is not zero. For �1 6 m 61, it is obtained
�1 6 b 6 2. In addition, for situations with �1 6 m 6 �1, namely
the rapidly decreasing velocity cases, the stream function and the
similarity variable have to be redefined as

wðx; yÞ ¼ f ðgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

mþ 1

r
mU0xðmþ1Þ=2 ð8aÞ

and

g ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1
�2

r
U0

m
xðm�1Þ=2: ð8bÞ

With these definitions, the velocities are re-expressed as
u ¼ U0xmf 0ðgÞ and

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1
�2

U0mxm�1

r
f 0ðgÞgm� 1

mþ 1
þ f ðgÞ

� �
:

Then the wall mass transfer velocity becomes

vwðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1
�2

U0mxm�1

r
f ð0Þ / xðm�1Þ=2:

The similarity equation is obtained as follows:

f 000 � ff 00 þ bf 02 ¼ 0 ð9Þ

with the same BCs as Eq. (6a)–(6c). For this case, one obtains
2 < b <1. Since there is no general analytic solutions for the above
similarity equations, Eqs. (5), (7), and (9) combined with the BCs
(6a)–(6c) were solved by using the so-called shooting method
[24] to convert the boundary value problem to an initial value prob-
lem. A fourth-order Runge–Kutta integration scheme was adopted
to solve the applicable initial value problem.
3. Results and discussion

3.1. Theoretical analysis of the solutions

When m = 1, the equation reduced to the results discussed by
Miklavcic and Wang [20]. Therefore, it is found that the current
formulation includes the solution for the shrinking sheet with a
linear velocity. The solution is an exact solution for the whole Na-
vier–Stokes equations only at m = 1. For other power indices, the
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boundary layer assumptions have to be employed. The discussion
here will be emphasized on other parameters except m = 1. For
Eq. (5) there is a special solution in the form of
f ðgÞ ¼ a1=ðgþ a2Þ. Substituting this relationship into Eq. (5)
yields

f ðgÞ ¼
6

2�b

gþ
ffiffiffiffiffiffi

6
2�b

q ð10Þ

at s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð2� bÞ

p
. This solution is an algebraically decaying func-

tion with f(1) ? 0. For this case, f 00ð0Þ ¼ 2=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð2� bÞ

p
Þ. For a

stretching sheet problem, there also exist algebraically decaying
solutions as found by Liao and Magyari [25]. From Ref. [20], for
m = 1, the analytical solution is

f ðgÞ ¼ C þ e�Cx

C
; ð11Þ

where C = f(1) and C can be obtained from the mass transfer
parameter as s ¼ C þ ð1=CÞ. Analytical solutions also exist for other
power indices as follows. When m ¼ �1=3; b ¼ �1, Eq. (5) becomes

f 000 þ ff 00 þ f 02 ¼ 0: ð12Þ

This equation can be integrated twice as

f 0 þ f 2

2
¼ ða� sÞgþ s2

2
� 1

� �
; ð13Þ

where a = f
00
(0). Since from the BCs, for sufficiently large g,

f
0
(1) ? 0. Then, it requires that a P s. However, if a > s, we obtain

f ðgÞ / ffiffiffigp for g ?1, and is not finite. Therefore, in order to have
a solution, it requires that a = s. Then, we have

f 0 þ f 2

2
¼ s2

2
� 1

� �
: ð14Þ

When g ?1, we have f ð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2
p

. Therefore, for
b ¼ �1; s P

ffiffiffi
2
p

. The lower limit is just the algebraically decaying
solution for s ¼

ffiffiffi
2
p

. The solution is

f ðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2
p

coth

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2
p

2
gþ coth�1 sffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 2
p
� �" #

ð15aÞ

and

f 0ðgÞ ¼ � s2 � 2
2

csch2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2
p

2
gþ coth�1 sffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 2
p
� �" #

: ð15bÞ

Another analytical solution can be obtained for b = �2, namely
m ¼ �1=2, then Eq. (5) becomes

f 000 þ ff 00 þ 2f 02 ¼ 0: ð16Þ

The above equation is equivalent to

1
f

d
dg

f 3=2 d
dg

f�1=2f 0 þ 2
3

f 3=2
� �� �

¼ 0: ð17Þ

Integrating once yields

�1
2

f 02 þ ff 00 þ f 2f 0 ¼ �1
2
þ sa� s2: ð18Þ

By applying the BCs at g ?1, we obtain � 1
2þ sa� s2 ¼ 0. Then we

know that solution exists for

a ¼ sþ 1
2s
: ð19Þ

An integration of Eq. (18) yields

f�1=2f 0 þ 2
3

f 3=2 ¼ 2
3

s3=2 � 1ffiffi
s
p : ð20aÞ
Using the BCs at g ?1, we know that s P
ffiffiffiffiffiffiffiffi
3=2

p
, where the lower

limit is also the algebraically decaying solution. By define a new
function as gðgÞ ¼

ffiffiffiffiffiffiffiffiffi
f ðgÞ

p
and substituting it into Eq. (20a) yields

g0 þ 1
3

g3 ¼ 1
3

s3=2 � 1
2
ffiffi
s
p : ð20bÞ

The final solution reads

gþ C0 ¼
1

2a2 ln
f � a

ffiffiffi
f

p
þ a2

ð
ffiffiffi
f

p
þ aÞ2

�
ffiffiffi
3
p

a2 tan�1 2
ffiffiffi
f

p
� a

a
ffiffiffi
3
p : ð21Þ

where a ¼ � s
3
2 � 3

2
ffiffi
s
p

� �1=3

and

C0 ¼
1

2a2 ln
s� a

ffiffi
s
p
þ a2

ð
ffiffi
s
p
þ aÞ2

�
ffiffiffi
3
p

a2 tan�1 2
ffiffi
s
p
� a

a
ffiffiffi
3
p ;

It is an implicit function of g.
For large mass transfer parameters, define a new function as

f ðgÞ ¼ sþ ðuðxÞ=sÞ, where x = gs. Substituting this function into
Eq. (5) and letting s ?1 yield

u
v
þ _u ¼ 0 ð22Þ

with boundary conditions

uð0Þ ¼ 0; ð23aÞ
_uð0Þ ¼ �1; ð23bÞ
_uð1Þ ¼ 0: ð23cÞ

The solution is similar to the asymptotic suction profiles as

uðgÞ ¼ e�gs � 1: ð24Þ

When m = �1(+), b ? �1, the similarity equation is very
interesting

f 000 þ f 02 ¼ 0 ð25Þ

the value of s does not affect the solution, because it is only a func-
tion of f

0
(g). There is also a special analytical solution for Eq. (25) as

f ðgÞ ¼ 6
gþ

ffiffiffi
6
p þ s�

ffiffiffi
6
p

: ð26Þ

This solution is the only solution for Eq. (25). For this case
f 00ð0Þ ¼

ffiffiffiffiffiffiffiffi
2=3

p
. For m = �1(�), b ? +1, it is obtained that F

000
+ F

02 = 0
by using a transformation f ðgÞ ¼ ð1=

ffiffiffi
b
p
ÞFð

ffiffiffi
b
p

gÞ for Eq. (9). The solu-
tion will be the same as that for m = �1(+), which makes sense from
the physical configuration.

3.2. Numerical solutions

3.2.1. Solutions for 1 < b 6 2
Since there is no general analytical solution for the similarity

equations, numerical technique has to be used to solve the bound-
ary value problems. The code was validated using the previous re-
ported values from Ref. [20] for b = 1. During the computation, the
shooting error was controlled less than 10�6.

The solution domains of Eq. (5) are shown in Fig. 1a and b under
different values of b for f

00
(0) and f(1), respectively, as a function of

mass suction parameter at the wall, namely it s. From Fig. 1 very
rich non-linear phenomena can be observed for Eq. (5) with the
associated BCs (6a)–(6c). Since the solution for some special
parameters, for example, b = �1 and b = �2 have been discussed
in previous section analytically, the results were not shown in
the plot. For b = 0, Eq. (5) becomes the famous Blasius equation,
the solution has been discussed in another work about Blasius
equation [26]. Therefore, no solutions for b = 0 is shown in the re-
sult, but the solution behaviors are very similar to those for b = 0.5.
From Fig. 1, it is found that solutions are not unique for certain
values of b. For b P 1, there is one solution for a critical value of



1 1.5 2 2.5 3 3.5 4
-4

-3

-2

-1

0

1

2

3

4

s

f"
(0

)

From left to right:
β= -3, -1.5, -0.5, 0.5, 1.0, 1.5, 2.0

For the circle from left to right:
β= -3, -1.5, -0.5, 0.5, 1.0, 1.5

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

s

f(
∞

)

From left to right:
β= -3, -1.5, -0.5, 0.5, 1.0, 1.5, 2.0

Fig. 1. The solution domain for the momentum boundary layer equation at
different values of for f

00
(0) and f(1) in (a) and (b), respectively.

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

η

f''(η)
β= -3.0, -1.5, -0.5, 0.5, 1.5

β= -3.0, -1.5, -0.5, 0.5, 1.5
f'(η)

s = 2.5
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s = sc, and two solutions for mass suction parameters higher than sc.
As a matter of fact, the algebraically decaying solution can be trea-
ted as the third solution, which is not in the solution domain curve
as shown in Fig. 1a. Also when b > 1, for the lower solution branch,
f
00
(0) becomes negative when s is sufficiently large, which, in an-

other words, means that there is velocity overshoot in the bound-
ary layer. The fluid velocity near the sheet can be greater than the
wall shrinking velocity. At the same time, there is a certain mass
suction parameter making the wall shear stress zero. This is of
practical interest in wall drag reduction for a shrinking sheet. How-
ever, quite different solution behavior is seen for 0 < b < 1. The re-
sult of b = 0.5 gives a typical example. For this domain of b, there
also exist multiple solutions. However, the lower solution branch
terminates at a finite value of s. The terminating point is just the
solution of Eq. (10), namely the algebraically decaying solution,
which is also shown in Fig. 1a with a circle. The behavior near
the terminating point is very complicated. There is a spiral with
infinitely many solutions when it approaches the termination
point. This kind of solution behavior has been discussed by Miklav-
cic and Wang [20] for the axisymmtric case in their paper. Similar
behaviors were observed in the current study for 0 < b < 1. For
b = 0, the behavior is also similar as discussed in another work
[26]. But for b < 0, the solution domain becomes simpler. There is
only one solution branch and the solution branch terminates at
the algebraically decaying solution points as indicated by the cir-
cles. For the upper solution branch, f
00
(0), namely the wall shear

stress, increases with the decrease of b and generally increase with
the increase of mass suction at the wall.

The variation behavior of f(1) is also quite interesting for differ-
ent values of b as shown in Fig. 1b. f(1) can give a measure of the
total flow rate induced by the shrinking sheet and is important in
practical applications. For b P 1, the values of f(1) for both solu-
tion branches are greater than zero. Only the algebraically decay-
ing solution leads to a zero value of f(1). For lower solution
branch, as proved by Miklavcic and Wang [20], when b = 1, f(1)
continuously decrease when s increases. However, for b > 1, there
is a minimum value of f(1) for the lower solution branch under
a certain mass suction parameter. This mass suction parameter
corresponds to the shear-free mass suction parameter for the low-
er solution branch. When s is larger than this critical value, the in-
duced flow rate increases with increasing s. This increase in
induced flow rate is believed due to the fluid velocity overshoot
in the boundary layer. When b < 1, the solution curve terminates
at the algebraically decaying solution with f(1) = 0. For the upper
solution branch, f(1) is always increasing with the increase of
mass suction parameter, s.

In order to show the velocity and shear stress in the boundary
layer, some typical examples are shown in Fig. 2 for different val-
ues of b with s = 2.5 for the upper branch. It is seen that for the
upper solution branch under the same mass suction at the wall,
the boundary layer is closer to the wall for a lower value of b.
The wall drag also increases with the decrease of b. Some solutions
of the lower solution branch for b = 1.5 under different suction
parameters are shown in Fig. 3. Interesting variation behavior is
found in Fig. 3 for the lower solution branch. As the mass suction
parameter increases, the shear stress becomes more negative with
velocity overshoot near the shrinking sheet. The shear stress pro-
files in the boundary layer are no longer monotonously decreasing
as the upper solution branch. The maximum magnitude of shear
stress can occur in the boundary layer or on the wall. But for the
upper solution branch, the maximum shear stress always occurs
on the wall. Due to wall mass suction, the fluid can actually drag
the sheet to shrink into the slot. The physical implementation of
the lower solution branch is of interest for further investigation.

3.2.2. Solutions for 2 < b <1
For this range of b, the shrinking sheet is moving toward the slot

with a rapidly decreasing velocity with the distance from the slot.
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Even though Eq. (5) with BCs (6a)–(6c) has solutions also for
2 < b <1, the solution does not connect to any meaningful value
of power index m for a shrinking sheet. For this case, based on
the definition of the velocity, a positive s indicates mass injection
and a negative value implies mass suction. There is also a general
algebraically decaying solution for Eq. (9) as

f ðgÞ ¼
6

b�2

gþ
ffiffiffiffiffiffi

6
b�2

q ð27Þ

at s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ðb� 2Þ

p
. It interestingly shows that solutions exist for a

mass injection at the wall with an algebraically decaying function,
which is quite different from a non-rapid shrinking sheet. The
numerical solutions of Eq. (9) together with BCs (6a)–(6c) were
computed for certain values of b. The solution domain for b = 6
and b = 10 are shown in Fig. 4. Interesting observations are found.
For each value of b, there are two solution branches. Both branches
terminate at the same point, which is just the algebraically decaying
solution for that value of b. Solutions exist for positive values of s,
indicating that there is solution for mass injection at the wall for
this rapid shrinking sheet. Based on Eq. (27), it is expected that
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Fig. 4. The solution domain for the momentum boundary layer equation at
different values of b for f
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(0) and f(1) for the conditions with a rapid decreasing

velocity.
the solution branch terminating points moves toward the left with
increasing values b of and reach s = 0 for b ?1. The values of f

00
(0)

changes with the change of b. For the lower solution branch, a high-
er value of b leads to a higher value of f

00
(0), showing higher wall

shear stresses. However, for the upper solution branch, there are
some interception point for different values of b. When s is less than
a certain value, a higher b results in a smaller wall stress. However,
when s is large than that value, a higher b leads to a higher wall
stress. As both solution branches approach to the terminate points
the difference between the two solutions becomes smaller and
smaller. The solution multiplicity and similar solution behavior
have been found for a stretching sheet by Liao [19]. The values of
f(1) are also illustrated in Fig. 4. From the solution, it is found that
the lower solution branch gives a more negative number of f(1),
meaning a higher magnitude with more induced flow rate. For the
lower branch, a higher value of b results in a lower induced flow
rate, namely a higher value of f(1) with less magnitude. But for
the upper solution branch, there also exists an interception point
and the variation trend changes when that point is passed. As the
solutions branches approach the terminating point, f(1) goes to
zero for both solution branches.

To further show the velocity and the shear stress variation
behavior across the boundary layers, some velocity and shear
stress profiles are presented briefly. Some examples for the solu-
tion with b = 6 at different values of s are shown in Figs. 5 and 6
for the lower solution branch and the upper solution branch,
respectively. For the lower solution branch, all the three functions
like f(g), f

0
(g), and f

00
(g) are monotonous functions either increasing

or decreasing with g. The maximum wall shear stress and velocity
occur on the wall. With the increase of s, the solution decays
slower with further penetration to the fluid far from the shrinking
sheet. Boundary layer thickness becomes thicker. There is no veloc-
ity overshoot found for this solution branch. However, very differ-
ent observations are seen in the upper solution branch as shown in
Fig. 6. The main difference of the upper solution branch from the
lower branch is the velocity or shear stress over shoot in the
boundary layer. But the overshoot in this condition is different
from what we found in the previous sections. This velocity over-
shoot occurs in the boundary layer with positive fluid velocity. In
another word, compared to the sheet shrinking velocity, there is
a reversal flow in the boundary layer near the edge of the boundary
layer. This reversal flow makes the flow induced by the shrinking
sheet penetrate deeper into the fluid with thicker boundary layer
thickness compared with the lower solution branch. With the
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Fig. 5. Some examples of the solution for the lower solution branch at b = 6.0 with
rapid decreasing velocity under different mass transfer parameters.
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rapid decreasing velocity under different mass transfer parameters, where velocity
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increase of s, the boundary layer thickness also increases like the
lower solution branch.

In a short summary, the shrinking sheet with a power-law
velocity at the sheet is investigated in this work. Since as pointed
out by previous researchers [14,16], the exponentially stretching
velocity also belongs to such group of similarity equations, the cur-
rent results can also applied to an shrinking sheet with exponen-
tially shrinking velocity by taking b = 2. It should be noted that
for rapid shrinking sheet, the solution variation behaviors are quite
different from the rapidly stretching surface, where there are infi-
nite number of solutions for certain mass transfer parameter with
mass suction [16]. But for the rapidly shrinking sheet problem,
solutions can exists with mass injection and there are only two
solutions found by numerical techniques. Compared with the con-
tinuously stretching surface, the boundary layer flow for a contin-
uously shrinking sheet is quite different and interesting non-linear
phenomena were found. However, from the physical implementa-
tion point of view, whether these flows exist in a real world is still
an open problem worthy of further study.

4. Conclusion

In this paper, the momentum boundary layers over a continu-
ously shrinking surface with a power-law velocity were investi-
gated. Some findings can be summarized as follows:

1. An algebraically decaying solution is found analytically for each
value of the controlling parameter b under a certain value of the
mass transfer parameter s.

2. Two solution branches exist for b P 1. There is also an algebra-
ically decaying solution for this range of b. Quite different
boundary layers were found for the two solution branches for
b > 1 with velocity overshoot seen for the lower solution branch
for sufficiently large mass suction parameter.

3. For 0 6 b < 1, there are also more than one solutions for certain
mass suction parameters. But the lower solution branch always
terminates at the algebraically decaying solution. The solution
behavior is quite interesting and very complicated when the
solution domain approaches to the terminating point.

4. For b < 0, there exist one solution and the solution domain ter-
minates at the algebraically decaying solution. Exact solutions
are presented for some special cases with m = �1, b = �1, and
b = �2.
5. For 2 < b <1, the boundary layers are corresponding to the rap-
idly decreasing case. There are two solutions obtained for cer-
tain mass transfer parameters. Both solution branches
terminate at the same point, namely the algebraically decaying
solution. Velocity overshoot near the boundary layer edge is
found for the upper solution branch. It is also distinct from
the stretching sheet with a rapidly decreasing velocity that
solution exists for mass injection;

6. The boundary layers over a shrinking sheet are greatly different
from the boundary layers due to a stretching sheet and offer
more nonlinear phenomena in the boundary layer theory.
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